

Asteroseismology and StellarPhysics

Savita Mathur

Seismology

Oscillation eigenmodes characterized by:

- ℓ: Degree
- m : Azimuthal order
- n : Radial Order

Acoustic (p) modes:

- Restoring force:
 - Pressure
 - Equidistant in frequency

Gravity (g) modes:

- Restoring force:
 - Buoyancy
- Evanescent in the convective zone
- Equidistant in period

Mixed modes

Coupling between p- and g-mode cavities

10/23/15

Seismology

Oscillation eigenmodes characterized by:

- ℓ: Degree
- m: Azimuthal order

- interior of the sun and the stars

Mixed modes

Coupling between p- and g-mode cavities

Power Spectrum

Power Spectrum

Stellar properties: direct methods

Use of scaling relations

From global asteroseismic parameters and a good estimation of T_{eff}

$$R \propto v_{\rm max} \langle \Delta v \rangle^{-2} T_{\rm eff}^{0.5}$$
 (~5%

$$M \propto v_{\rm max}^3 \langle \Delta v \rangle^{-4} T_{\rm eff}^{1.5}$$
 (~10%)

Tested both theoretically and observationally [Kjeldsen & Bedding 1995; Huber et al. 2012; Mathur et al. 2012; Silva Aguirre et al. 2012]

.10/23/15

Stellar modeling

Best-fit model to spectroscopic and seismic constraints

- Grid-based models
- [Chaplin et al. 2014]
 E.g. Asteroseismic Modeling Portal [Metcalfe et al. 2009]

- Large sample of stars [Mathur et al., 2012; Metcalfe et al. 2014]
 - Improve precision on M, R, age
 - Structure:
 - base of convection zone

Model-dependent...

10/23/15

Stellar modeling

Stellar evolution

[García & Stello in Extraterrestrial seismology, CUP, 2015]

The RG revolution

Confusion in the HR diagram:

- From their global properties a RGB star and a Red Clump giant are the same
- Same HR position, same envelopes, same large frequency spacings...
- "Just as in Hollywood, the age of a star is not always obvious if you look at the surface"

.10/23/15

Probing interiors of red giants

- Determination of period spacing of mixed modes ΔP
- Two regimes:
 - Large values of ΔP : burning He in their core
 - small values of ΔP : burning H in a shell

[Bedding et al. 2011, Mosser et al. 2011]

.10/23/15

Internal rotation:

Rotational splittings

Internal rotation:

- Rotational splittings
- Complicate measurement: Inclination angle of the star

Internal rotation:

- Rotational splittings
- Complicate measurement: Inclination angle of the star

Rotation profile of the Sun

Rotation profile of a Subgiant

Rotation profile of a Subgiant

Rotation profile in red giants

By measuring the splittings

- In more evolved stars
- Core rotates 10 times faster
 - Radiative region
 - In 3 RG stars [Beck et al. 2012 Nature]

- Extension to 300 RG [Mosser et al. 2013, A&A]

Summary

- Asteroseismology:
 - Constrain stellar parameters (M, R, age)
 - Planetary systems
 - Distribution of parameters in the galaxy
 - Study rotation (internal and surface)

Other interests

- Kepler star properties catalog:
 - isochrone fitting based on the most accurate observations done to provide stellar parameters of ~200,000 Kepler targets
- Magnetic activity/rotation
- Galactic archeology:
 - In collaboration with APOGEE (SDSS3)